Learning vector quantization: The dynamics of winner-takes-all algorithms
نویسندگان
چکیده
Winner-Takes-All (WTA) prescriptions for Learning Vector Quantization (LVQ) are studied in the framework of a model situation: Two competing prototype vectors are updated according to a sequence of example data drawn from a mixture of Gaussians. The theory of on-line learning allows for an exact mathematical description of the training dynamics, even if an underlying cost function cannot be identified. We compare the typical behavior of several WTA schemes including basic LVQ and unsupervised Vector Quantization. The focus is on the learning curves, i.e. the achievable generalization ability as a function of the number of training examples.
منابع مشابه
The dynamics of Learning Vector Quantization
Winner-Takes-All (WTA) algorithms offer intuitive and powerful learning schemes such as Learning Vector Quantization (LVQ) and variations thereof, most of which are heuristically motivated. In this article we investigate in an exact mathematical way the dynamics of different vector quantization (VQ) schemes including standard LVQ in simple, though relevant settings. We consider the training fro...
متن کاملLearning dynamics and robustness of vector quantization and neural gas
Various alternatives have been developed to improve the winner-takes-all (WTA) mechanism in vector quantization, including the neural gas (NG). However, the behavior of these algorithms including their learning dynamics, robustness with respect to initialization, asymptotic results, etc. has only partially been studied in a rigorous mathematical analysis. The theory of on-line learning allows f...
متن کاملPhase transitions in Vector Quantization
We study Winner-Takes-All and rank based Vector Quantization along the lines of the statistical physics of off-line learning. Typical behavior of the system is obtained within a model where high-dimensional training data are drawn from a mixture of Gaussians. The analysis becomes exact in the simplifying limit of high training temperature. Our main findings concern the existence of phase transi...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملCompetitive Learning Methods with Refractory and Creative Approaches
This paper presents two competitive learning methods with the objective of avoiding the initial dependency of weight (reference) vectors. The first is termed the refractory and competitive learning algorithm. The algorithm has a refractory period: Once the cell has fired, a winner unit corresponding to the cell is not selected until a certain amount of time has passed. Thus, a specific unit doe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 69 شماره
صفحات -
تاریخ انتشار 2006